Chem. Ber. 110, 3078-3083 (1977)

Kristall- und Molekülstruktur von Di-µ-iodo-tetrakis[tris(phenylethinyl)phosphin]dikupfer

Axel Hengefeld, Jürgen Kopf und Reinhard Nast*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

Eingegangen am 3. Dezember 1976

Darstellung und Eigenschaften der Titelverbindung werden beschrieben. Die Röntgenstrukturanalyse ergab, daß die trikline Elementarzelle des Komplexes zwei dimere Moleküle $\{[(C_6H_5 - C \equiv C)_3P]_2CuI\}_2$ enthält. Darin sind die beiden Cu^I-Atome annähernd tetraedrisch koordiniert und durch zwei Iodbrücken verknüpft. Die Bindungslängen und -winkel sowie die $vC \equiv C$ - und δ^{31} P-NMR-Werte werden mit denen des unkoordinierten $P(C \equiv C - C_6H_5)_3$ verglichen, das erstmals als Ligand verwendet wurde.

Crystal and Molecular Structure of Di-µ-iodo-tetrakis[tris(phenylethynyl)phosphine]dicopper

The preparation and the properties of the title compound are described. The X-ray analysis has shown that the triclinic unit cell of the complex contains two dimeric molecules $\{[(C_6H_5-C\equiv C)_3P]_2CuI\}_2$. Therein both Cu¹ atoms are coordinated approximately tetrahedraly and linked by two iodine bridges. The bond lengths and angles as well as the vC=C and $\delta^{31}P$ NMR values are compared with those of uncoordinated $P(C\equiv C-C_6H_5)_3$, used firstly as ligand.

Die Kristall- und Molekülstrukturen einer Reihe von Komplexen der Kupfer(I)halogenide CuX (X = Cl, Br, I) mit koordinativ einzähligen tertiären Phosphinen R₃P (R = Alkyl und/oder Aryl) sind in den vergangenen 10 Jahren Gegenstand eingehender röntgenographischer Untersuchungen gewesen¹⁾. Da von den Addukten des Typs CuX · 2PR₃ zu Beginn unserer Arbeiten lediglich eine Strukturanalyse des einkernigen, trigonal ebenen $[(C_6H_5)_3P]_2CuBr \cdot \frac{1}{2}C_6H_6^{2)}$ vorlag, wurde die Darstellung und Strukturuntersuchung weiterer Verbindungen dieser Stöchiometrie versucht. Aus sterischen Gründen wurde erstmals als Ligand Tris(phenylethinyl)phosphin gewählt, zumal dessen Festkörperstruktur bereits bekannt war³⁾.

1. Darstellung und Eigenschaften von $\{[(C_6H_5 - C \equiv C)_3P]_2Cul\}_2$

Der Komplex wird durch Umsetzung von festem CuI mit einer siedenden Lösung von $P(C \equiv C - C_6 H_5)_3$ in Ethanol dargestellt und nach Umkristallisieren aus Acetonitril in Form farbloser, luftbeständiger, diamagnetischer Kristalle erhalten. Die im festen

¹⁾ J. T. Gill, J. J. Maierle, P. S. Welcker, D. F. Lewis, D. A. Ucko, D. J. Bartens, D. Stowens und S. J. Lippard, Inorg. Chem. 15, 1155 (1976), und die dort zit. Lit.

²⁾ P. H. Davies, R. L. Bedford und J. C. Paul, Inorg. Chem. 12, 213 (1973).

³⁾ D. Mootz und G. Sassmannshausen, Z. Anorg. Allg. Chem. 335, 200 (1967).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1977

Zustand zweikernige Verbindung ist in Tetrahydrofuran (THF) und CH_2Cl_2 nach Leitfähigkeitsmessungen und Molmassebestimmungen als monomerer Nichtelektrolyt löslich.

Sowohl der Komplex als auch der freie Ligand zeigen im festen und gelösten Zustand nur je eine IR- und ramanaktive intensive $vC \equiv C$ -Frequenz der Rasse A₁ (Tab. 1). Die zweite, bei einer lokalen Symmetrie C_{3v} für den freien und koordinierten Liganden zu erwartende IR- und ramanaktive $vC \equiv C$ -Schwingung der Rasse E ist nicht identifizierbar.

Das ³¹P-NMR-Spektrum des in Lösung monomeren Komplexes zeigt nur ein durch Kopplung mit ⁶³Cu und ⁶⁵Cu stark verbreitertes Signal, dessen Lage wenig verschieden von dem des freien Liganden ist (Tab. 1). Somit wird durch die Koordination die elektronische Abschirmung der ³¹P-Kerne kaum verändert.

Tab. 1. IR-	und	ramanaktive	$vC \equiv C$ -Frequenzer	[cm ⁻¹]	und	chemische	Verschiebungen	$\delta^{31}P$
[ppm] des Komplexes und des freien Liganden								

	vC≡C		clip
	IR	Ra	037 P
	2174*)	2176 ^{a)}	
Komplex		2174 ^{b)}	-86.7^{d}
	2170°)	2171 °)	
	2165 ^{a)}	2168*)	
$P(C \equiv C - C_6 H_5)_3$			- 88.4 ^d)
	2165°)	2168 ^{b)}	

^{a)} In KBr bzw. kapillar (Ra).

» In THF.

c) In CH₂Cl₂.

^{d)} In CD₂Cl₂; ext. Standard 85 proz. Phosphorsäure.

2. Diskussion der Molekülstruktur

Die Röntgenstrukturanalyse des kristallinen Komplexes ergab, daß dieser in einer triklinen Elementarzelle zwei kristallographisch nicht äquivalente dimere Einheiten $\{[(C_6H_5C_2)_3P]_2Cul\}_2$ (A und B) enthält. Das Symmetriezentrum von A befindet sich in $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$, das von B in (0,0,0). Die dimeren Moleküle enthalten über Iodbrücken verknüpfte Cu^I-Atome mit pseudotetraedrischer Anordnung der je 4 Liganden (Abb. 1 und 2) und besitzen somit eine Struktur, die der von $[(As - N)CuI]_2$, $As - N = o-C_6H_4[N(CH_3)_2]^{-4}$, sowie des kürzlich beschriebenen $\{[C_6H_5(CH_3)_2As]_2CuCl\}_2^{-1}$ ähnelt.

Ein Vergleich der Durchschnittswerte der in Tab. 2 aufgeführten Bindungslängen und -winkel mit denen des unkoordinierten Liganden³⁾ zeigt Folgendes: In Übereinstimmung mit einer geringfügigen Verschiebung der vC=C-Frequenz des Komplexes um ca. 9 cm⁻¹ nach höheren Wellenzahlen (Tab. 1) scheinen die C=C-Bindungen im Komplex (118.7(9) pm) ein wenig kürzer als im freien Liganden (119.7(14) pm) zu sein. Das Gleiche gilt für die P-C-Abstände, die im Komplex 174.4(7) pm und im unkoordinierten Phosphin 176.5(10) pm betragen. Die Aufweitung der Winkel C-P-C der

⁴⁾ R. Graziani, G. Bombieri und E. Forsellini, J. Chem. Soc. A 1971, 2331.

freien Liganden (100.7(5)°) auf 102.2(12)° im Komplex liegt innerhalb der Standardabweichungen und kann daher nicht als Hinweis auf einen verstärkten sp³-Charakter der koordinierten P-Atome gewertet werden.

Abb. 1. Perspektivische ORTEP-Darstellung⁵⁾ des Moleküls B

Abb. 2. Atomnumerierungsschema und Bindungsbezeichnungen im Molekül B. Die Atomnumerierung von Molekül A erhält man durch Addition mit 50

⁵⁾ C. K. Johnson, ORTEP: ORNL-3794, revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 1966.

Bindung	: A	в	Bindung	A	В
1	262.2(1)	263.3(1)	10	174.6(8)	174.3(10)
2	264,6(1)	261.1(1)	11	173.6(10)	173.4(10)
3	225.5(3)	226.3(2)	12	174.5(9)	174.8(7)
4	226.2(3)	226.1(3)	13	175.9(7)	173.8(8)
5	287.2(3)	274.7(2)	14	174.2(9)	174.6(8)
6	441.6(1)	446.7(1)	15	174.4(10)	174.8(8)
16	119.7(12)	117.7(15)	22	143.4(10)	143.0(14
17	117.1(14)	118.4(14)	23	142.3(13)	142.3(13
18	118.8(12)	120.2(11)	24	142.5(11)	143.6(9)
1 9	119.1(10)	118.1(10)	25	143.0(9)	142.7(9)
20	118.7(13)	119.5(11)	26	142.8(11)	142.9(10
21	117.7(14)	119.7(10)	27	143.0(13)	142.9(10
inkel	A	B	Winkel	A	В
1,2	113.9(2)	116.8(2)	3,10	117.4(4)	115.2(3)
1,3	109.2(1)	107.0(1)	3,11	112.0(3)	113.6(3)
1,4	107.9(1)	103.1(1)	3,12	119.6(3)	118.4(3)
2,3	103.7(2)	108.6(2)	10,11	102.7(5)	103.1(4)
2,4	105.7(2)	110.3(2)	10,12	100.3(4)	100.4(4)
3,4	116.6(1)	110.9(1)	11,12	102.4(5)	104.2(5)
1,7	66.1(2)	63.2(2)	10,16	174.8(9)	173.0(9)
4,13	116.1(3)	110.1(3)	16,22	176.1(11)	179.0(10
4,14	119.2(3)	119.2(3)	11,17	170.9(10)	168.5(8)
4,15	113.3(3)	118.1(3)	17,23	175.8(11)	178.4(10
3,14	100.7(4)	101.9(4)	12,18	177.3(10)	173.5(9)
3,15	103.5(4)	102.2(4)	18,24	176.5(10)	179.5(9)
4,15	101.8(4)	103.0(4)	20,26	176.7(10)	176.4(9)
3,19	172.1(8)	171.8(9)	15,21	170.0(8)	174.0(9)
9,25	178.3(9)	177.7(9)	21,27	177.9(8)	177.7(10
4,20	178.6(8)	177.8(8)			
1602/26 7					

Tab. 2. Ausgewählte Bindungsabstände [pm] und Bindungswinkel [°] der Molekülhälften von A und B

Für den zentralen Bereich des Komplexes ergaben sich die Bindungswinkel Cu-I-Cuvon 66.1(2)° in A bzw. 63.2(2)° in B sowie die Abstände Cu-Cu von 287.2(3) bzw. 274.7(2) pm und I-I von 441.6(1) bzw. 446.7(1) pm, Werte, die den im [(As-N)CuI]₂ gefundenen (63.9°, 273 pm, 437 pm)⁴⁾ sehr ähnlich sind. Bemerkenswert ist die Tatsache, daß in beiden Fällen die I-I-Abstände praktisch der Summe zweier van der Waalsscher Iodradien (215 ± 5 pm) entsprechen. Somit ist der zentrale Molekülbezirk 1 beider Komplexe so dimensioniert, daß London-Kräfte zwischen den Brückenatomen wirksam werden können. Ob dies auch für andere Di-µ-iodo-Komplexe von Cu¹ zutrifft, ist noch zu überprüfen.

Dem Verband der Chemischen Industrie ("Fonds der Chemischen Industrie") danken wir für die finanzielle Unterstützung dieser Arbeit, der Deutschen Forschungsgemeinschaft für die Bereitstellung eines Einkristalldiffraktometers.

Experimenteller Teil

IR-Spektren: Perkin-Elmer Gitterspektrometer 325. – Raman-Spektren: Laser-Ramangerät Cary 82, Krypton Laser (514.527 nm), Modell 165 der Fa. Spectra Physics. – ³¹P-NMR-Spektren: 90 MHz – WH 90 – NMR-Spektrometer der Bruker Physik AG (Meßfrequenz 36.44 MHz).

 $Di-\mu$ -iodo-tetrakis[tris(phenylethinyl)phosphin]dikupfer: Die Suspension von 380 mg (2.0 mmol) wasserfreiem Cul in der Lösung von 1470 mg (4.4 mmol) P(C = C - C₆H₅)₃ in 50 ml absol. Ethanol wird ca. 80 h im Sieden gehalten. Der gebildete farblose Festkörper wird noch heiß abfiltriert und 3 mal mit je 5 ml Ethanol (40°C) gewaschen. Aus der Lösung dieses Rohproduktes in ca. 150 ml siedendem Acetonitril fällt beim langsamen Abkühlen der reine Komplex in gut ausgebildeten Einkristallen aus und wird nach Filtrieren 3 h i. Hochvak. bei Raumtemp. getrocknet. Ausb. 1.5 g (87.5%). $\overline{\chi}_{Mol} \cdot 10^6 = -798$.

 $\begin{array}{c} C_{96}H_{60}Cu_2l_2P_4 \ (1718.3) & \text{Ber. C 67.10 H 3.52 Cu 7.40 I 14.77 P 7.21} \\ & \text{Gef. C 67.17 H 3.48 Cu 7.4 I 14.7 P 7.3} \\ & \text{Molmasse 806 (dampfdruckosmometr. in CH}_2Cl_2 \ \text{bei} \\ & 45\,^\circ\text{C}; \ \text{ber. für den monomeren Komplex 859} \end{array}$

Kristalldaten und Intensitätsmessung: Weissenberg- und Präzessionsaufnahmen zeigen, daß die Kristalle dem triklinen Kristallsystem angehören. Die unter Verwendung von monochromatisierter (Graphitmonochromator) Mo- K_a -Strahlung aus 22 Reflexen auf einem automatischen Einkristalldiffraktometer der Fa. Hilger and Watts (Y290) ermittelten Gitterkonstanten und andere kristallographische Daten sind in der folgenden Übersicht angegeben:

Molmasse: $1718.3 \text{ g} \cdot \text{mol}^{-1}$ (Summenformel $C_{96}H_{60}Cu_2I_2P_4$) Gitterkonstanten: a = 1298.5 (34), b = 1564.2 (41), c = 2137.5 (58) pm $\alpha = 106.11$ (9), $\beta = 86.54$ (11), $\gamma = 93.48$ (9)° Zellvolumen: $V = 4159.0 \cdot 10^6 \text{ pm}^3$ Kristallsystem: triklin Raumgruppe: $P\overline{I}$; Z = 2Dichte: $\rho_{\text{ber.}} = 1.37 \text{ g} \cdot \text{cm}^{-3}$ $\rho_{\text{gef.}} = 1.35 \text{ g} \cdot \text{cm}^{-3}$ (Schwebemethode in CCl₄/n-Octan) $\lambda(\text{Mo-}K_{\alpha 1}) = 70.926 \text{ pm}, |F(000)| = 1720, \mu = 14.04 \text{ cm}^{-1}$ (Mo- K_{α})

Zur Sammlung der integrierten Intensitäten wurde ein Kristall der Größe $0.25 \times 0.2 \times 0.7 \text{ mm}^3$ auf dem genannten Diffraktometer bis zum maximalen Beugungswinkel von $\Theta = 20^{\circ}$ (sin $\Theta/\lambda = 0.48222 \cdot 10^{-2} \text{ pm}^{-1}$) nach der $\Theta/2\Theta$ -Scan-Technik vermessen. Insgesamt wurden so die Intensitäten von 15875 Reflexen erhalten. Die Umwandlung und Reduzierung der integrierten Intensitäten in symmetrieunabhängige Strukturamplituden geschah mit Hilfe des Programms ALDASO⁶⁰. Dabei wurden die üblichen Lorentz- und Polarisationskorrekturen unter Berücksichtigung eines ideal perfekten Graphitmonochromators durchgeführt. Auf eine Absorptionskorrektur wurde wegen des kleinen $\mu \cdot R$ von 0.14 verzichtet. Insgesamt wurden die Strukturamplituden von 6669 symmetrieunabhängigen Reflexen erhalten.

⁶⁾ K. Hoffmann, Dissertation, Univ. Hamburg 1976.

Strukturbestimmung und -verfeinerung: Die Struktur wurde mit Hilfe dreidimensionaler Patterson- und Fourier-Synthesen gelöst⁷⁾ und mit dem Programmsystem SHELX⁸⁾ verfeinert. Dabei wurde bei den schweren Atomen I, Cu und P mit anisotropen Temperaturfaktoren gerechnet, während die restlichen 96 C-Atome aus Gründen der Rechenzeitersparnis nur mit isotropen Temperaturfaktoren versehen waren. Der abschließende endgültige R-Faktor $[R = \sum_{hkl} (||F_0| - |F_c||) / \sum_{hkl} |F_0|]$ beträgt 0.063 für alle 6669 Reflexe. Sämtliche kristallographischen

Rechnungen wurden an der Rechenanlage des Rechenzentrums der Universität Hamburg durchgeführt. Die endgültigen Atomkoordinaten gibt Tab. 3 an.

<u></u>	x/a	у/ъ	z/c		x/a	у/ъ	z/a
I(,1)	1075(1)	477(0)	799(0)	1(51)	3840(0)	6027(0)	5424(0)
Cu(1)	465(1)	647(1)	- 306(1)	Cu(51) 5605(1)	5606(1)	4767(0)
	- 195(2)	1990(2)	- 133(1)	P(51)	6845(2)	6547(2)	5317(1)
5 1	-1121(7)	2214(6)	505(4)		7404(2)	7233(6)	188914
c 25	-1705(7)	2507(7)	972(4)	C(52)	7832(8)	7709(6)	4579(5)
c(3)	-2427(5)	2786(5)	1516(3)	c(53)	8228(7)	8283(5)	4196(4)
c(4)	-3376(5)	3104(5)	1431(3)	c(54)	9204(7)	8698(5)	4323(4)
c(5)	-4051(5)	3420(5)	1968(3)	C(55)	9630(7)	9239(5)	3944(4)
c(6)	-3778(5)	3419(5)	2589(3)	C(56)	9079(7)	9365(5)	3439(4)
28 22	-2029(5)	2785/5	2073(3)	C(57)	8103(7)	8951(5)	3312(4)
č š	- 814/8	2087(7)	-801(4)	C(58)	7677(7)	8410(5)	5691(4)
č(10)	-1219(8)	2033(8)	-1292(4)		8403(7)	5512(6)	5650(5)
C(11)	-1623(8)	1936(8)	-1914(4)	C(61)	9075(6)	4922(5)	5806(4)
C(12)	-1934(8)	2667(8)	-2095(4)	C(62)	8693(6)	4074(5)	5819(4)
	-2205(0)	2554(0)	-2719(4)	C (63)	9318(6)	3506(5)	6011(4)
clist	-2013(8)	677(8)	-2979(4)		10325(0)	1/00 j	6176(4)
c(16)	-1662(8)	1091(8)	-2355(4)	C(66)	10082(6)	5202(5)	5984(4)
C(17)	629(7)	2949(5)	31(5)	c(67)	6483(7)	7339(5)	6038(4)
C(18)	1220(7)	3576(6)	148(5)	c(68)	6155(7)	7899(6)	6501(4)
	1979(6)	4292(5)	288(4)	C(69)	5771(5)	8575(4)	7054(3)
c21	2610(6)	5746(5)	212(4)	C(70)	4717(5)	8727(4)	7134(3)
C(22)	3530(6)	5641(5)	482(4)	071	4345(5)	9394(4)	7004(3)
C(23)	3674(6)	4861(5)	655(4)	c 273	6079(5)	9756(4)	8016(1)
C(24)	2898(6)	4186(5)	558(4)	c(74)	6452(5)	9089(4)	7506(3)
C(25)	1493(7)	- 370(5)	-1824(3)	C(75)	4943(6)	6953(4)	3935(4)
c(27)	804(5)	-1358(4)	-2934(3)		4657(7)	7688(5)	4105(4)
c(28)	1481(5)	-1652(4)	-3473(3)	c 278	3478/6	8769/4	4310(4)
C(29)	1102(5)	-2162(4)	-4065(3)	c(79)	3079(6)	9615(4)	4967 4
C(30)	47(5)	-2379(4)	-4117(3)	C(80)	3473(6)	10255(4)	4662(4)
	- 251/5/	-1575(4)	- 2086(2)	C(81)	4265(6)	10048(4)	4182(4)
č 2 3 3 1	2504(7)	1188(5)	-1269(5)	0 82	4003(0)	9202(4)	4006(4)
c(34)	2966(7)	1786(5)	-1416(5)	c 284	7162(6)	5861(6)	2895(4)
C(35)	3576(5)	2484(4)	-1588(4)	C(85)	8007(4)	5849(4)	2433(3)
C(36)	3369(5)	3372(4)	-1283(4)	C(86)	8417(4)	6654(4)	2344(3)
C(37)	3961(5)	4054(4)	-1454(4)	C(87)	9200(4)	6656(4)	1867(3)
	4760(5)	2960(4)	-1930(4)	C(88)	9572(4)	5852(4)	1480(3)
c(40)	4375(5)	2278(4)	-2064(4)		9161(4)	5047(4)	1569(3)
C(41)	2767(6)	- 231(6)	- 815(4)		442016	5236(5)	1300/4
C(42)	3327(6)	- 599(6)	- 574(4)	C(92)	3752(6)	4756(5)	3016(4)
243	3992(5) 4980(*)	-1078(5)	- 295(3)	c(92)	2954(5)	4207(4)	2649(3)
c 245	5603(5)	-1779(5)	- 303(3)		2029(5)	4567(4)	2571(3)
c(46)	5220(5)	-2098(5)	218(3)		1419(5)	3124(4)	1918/31
c(47)	4224(5)	-1907(5)	482(3)	C(97)	2344(5)	2764 (4)	1996(1)
C(48)	3610(5)	-1397(5)	225(3)	C (98)	3112(5)	3306(4)	2361 (3)

Tab. 3. Fraktionelle Koordinate	en (×	10 ⁴); geschät:	zte Standarda	ibweichung in	Klammern
---------------------------------	-------	-----------------------------	---------------	---------------	----------

C 502/76.Tab.3

⁸⁾ G. Sheldrick, Programs for Crystal Structure Determination, Cambridge 1975.

[502/76]

⁷⁾ J. Kopf, Dissertation, Univ. Hamburg 1973.